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1 Abstract

The aim of this experiment is to determine the frequencies and ampli-
tudes of the Fourier components of a square wave, or any other periodic
waveform. Using Fourier theorem, the components of the square wave
were calculated. By exploitation the beats phenomena, we could com-
pare between the observed frequencies of the harmonic frequencies with
the frequencies expected from the calculations. The circuit containing
a diode bridge rectifier and a galvanometer is used, with two signal
generators.

2 Theory

2.1 Even and Odd Functions

Let f be defined on an interval, finite or infinite, and centered at x = 0.
We say that f is an even function if:

f (−x) = f (x) (1)

and an odd function if:

f (−x) = −f (x) (2)

for all x in that interval. That is, the graph of f is symmetric about
x = 0 if f is even, and antisymmetric about x = 0 if f is odd. For
Examples, cosine function is even, and sine is odd.

There are several useful algebraic properties of even and odd func-
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tions, such as the following:

even+ even = even

even× even = even

odd+ odd = odd

odd× odd = even

even× odd = odd

In addition, two useful integral properties are as follows. If f is even,
then: ∫ A

−A
f (x)dx = 2

∫ A

0

f (x)dx (3)

and if f is odd, then: ∫ A

−A
f (x)dx = 0 (4)

Note carefully that a given function is not necessarily even or odd; it
may be both even and odd (zero function), or it may be neither.

Next, suppose that for a given function f there exists a positive con-
stant T such that:

f (x+ T ) = f (x) (5)

for every x in the domain of f. Then, we say that f is a periodic
function of x, with period T.

Notice that if f is periodic with period T, it is necessarily periodic with
period 2T, 3T, 4T... as well. However, for all these possible periods,
if there exists a smallest one, that period is called the fundamental
period.[1]
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2.2 Fourier Series

Let us first consider Fourier analysis for periodic functions. The Fourier
theorem states that a periodic function can be constructed by summing
a series of sinusoidal waves of different amplitudes, frequencies and
phases. This series can possibly involve an infinite number of sine
and/or cosine terms. One term in the series appears at the fundamental
frequency (ω0), while the other terms oscillate at frequencies which are
harmonics (i.e. multiples) of the fundamental frequency (ωn = nω0).
Therefore, we can mathematically express a periodic function F (t) in
Fourier component form as follows:

F (t) =
1

2
A0 +

∞∑
n=1

An cos(nωt) +
∞∑
n=1

Bn sin(nωt) (6)

where A0 is the DC component of the periodic function, An cos(nωt)+
Bn sin(nωt) is the nth harmonic component of the function and An&Bn

are known as the Fourier coefficients or amplitudes. The fundamental
angular frequency is ω = 2π

T , where T is the period of the function.

The coefficients are calculated as follows:

A0 =
1

T

∫ T/2

−T/2
F (t)dt (7)

An =
1

2T

∫ T/2

−T/2
F (t) cos(nωt)dt (8)

Bn =
1

2T

∫ T/2

−T/2
F (t) sin(nωt)dt (9)

As an example, the construction of a periodic voltage square wave
form is illustrated in the next section.
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2.3 Fourier Series For a Square Wave

Suppose the following voltage square wave of period T:

V (t) =

{
−V0 ,−T/2 < t < 0

+V0 , 0 < t < T/2

V (t+ T ) = V (t)

The Fourier series expression for this square wave is as following, from
equation(6):

V (t) =
1

2
A0 +

∞∑
n=1

An cos(nωt) +
∞∑
n=1

Bn sin(nωt)

Where:

ω =
2π

T

A0 =
1

T

∫ T/2

−T/2
V (t)dt

=
1

T

[∫ 0

−T/2
−V0dt+

∫ T/2

0

+V0dt

]

=
1

T

[
V0t
∣∣∣−T/2
0

+ V0t
∣∣∣T/2
0

]
=

1

T

[
−V0T

2
+
V0T

2

]
= 0
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An =
1

2T

∫ T/2

−T/2
V (t) cos(nωt)dt

=
1

2T

[∫ 0

−T/2
−V0 cos(nωt)dt+

∫ T/2

0

V0 cos(nωt)dt

]

=
1

2T

[
V0 sin(nωt)

nω

∣∣∣−T/2
0

+
V0 sin(nωt)

nω

∣∣∣T/2
0

]
= 0

Bn =
1

2T

∫ T/2

−T/2
V (t) sin(nωt)dt

=
1

2T

[∫ 0

−T/2
−V0 sin(nωt)dt+

∫ T/2

0

V0 sin(nωt)dt

]

=
1

2T

[
V0 cos(nωt)

nω

∣∣∣0
−T/2

+
V0 cos(nωt)

nω

∣∣∣0
T/2

]
=

1

2T

[
(
V0
nω
− V0(−1)n

nω
) + (

V0
nω
− V0(−1)n

nω
)

]
= f

[
V0
nω
− V0(−1)n

nω

]
=
V0
2π

[
1− (−1)n

n

]
Finally, substitute A0, An, and Bn in the original equation, we get:

V (t) =
∞∑
n=1

V0
2π

(
1− (−1)n

n

)
sin(nωt) (10)

Note that V (t) = 0 for even n.
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Figure 1: (a) The fundamental wave has amplitude=1, and the rest
are harmonics of the fundamental. (b) Summing the waveforms in (a)
results in an approximate square wave.

Figure(1) illustrates an example of the Fourier components of a square
wave with amplitude=1. It shows the sum of only few terms in the
series. However, if we sum up more terms of the series, a better approx-
imation to the square wave is obtained. If we sum an infinite number
of terms, we obtain the ideal square wave with perfectly sharp edges.

2.4 Beats

Consider an interference, that results from the superposition of two
waves having slightly different frequencies. In this case, when the two
waves are observed at a point in space, they are periodically in and
out of phase. That is, there is a temporal (time) alternation between
constructive and destructive interference. As a consequence, this phe-
nomenon is referred as interference in time or temporal interference.
For example, if two tuning forks of slightly different frequencies are
struck, one hears a sound of periodically varying amplitude. This phe-
nomenon is called beating.
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“Beating is the periodic variation in amplitude at a given point due
to the superposition of two waves having slightly different frequencies.”[2]

Consider the superposition of two sinusoidal waves, one with fre-
quency ωn and the other with frequency ω. We will assume that the
waves have some phase difference and that both have amplitude A.
The resultant wave is as following:

S(t) = A sin(ωnt+ φn) + A sin(ωt)

By using the trigonometric identity:

sin(a) + sin(b) = 2 sin(
a+ b

2
) cos(

a− b
2

)

we obtain:

S(t) = 2A cos(
ωn − ω

2
t+

φn
2

) sin(
ωn + ω

2
t+

φn
2

)

The sum of two sinusoidal waves of equal magnitude is equivalent to
a product of two sinusoidal waves, one with frequency (ωn− ω)/2 and
the other with frequency (ωn + ω)/2. In general, this will be some
complicated waveform; however, consider the case in which ωn and ω

differ by a relatively small amount. The term cos
(
ωn−ω

2 t+ φn
2

)
will be

a low frequency oscillation, while the term sin
(
ωn+ω

2 t+ φn
2

)
will be a

high frequency oscillation. Their product is shown in figure(2). The
result is a rapidly oscillating function with relatively slow variations in
the overall amplitude. These low frequency variations in the amplitude
are called beats. As the difference between ωn and ω becomes small,
the period of the beats becomes long.[4]
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Figure 2: The superposition of two sinusoidal waves having same am-
plitude and slightly different frequencies[3]

3 Experimental Setup

3.1 Apparatus

The amplitudes and the frequencies of the waveform of the square
wave (after rewriting it using Fourier series) are measured by mixing
a sinusoidal signal of known frequency ω, and amplitude equal to the
square wave amplitude. So, two signal generators are used; one for a
square wave (S1), and the other for the sinusoidal signal (S2).

Mixing of the waveform and the sinusoidal signal is accomplished
using the circuit shown in Figure(3).

The diode bridge rectifier is used to let the current flows through the
load in the same direction, regardless of the sign of the input voltage.
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Figure 3: The circuit used

In effect, the full wave rectifier takes the absolute value of the input
voltage.

The circuit also includes a galvanometer, which is a very sensitive to
DC current and has low response. A resistor R is included to limit the
current flowing through the galvanometer. The galvanometer is used
to determine the amplitude of the mixed wave (VAB). Also, it averages
out the value of a signal.

Now, we want to derive a useful expression for VAB, i.e, we want an
expression of beats, because the galvanometer can follow it and detect
its amplitude, since it responds only to the low frequency variations in
the overall amplitude of the signal. First, we rewrite the equation(10),
as following1:

V1(t) =
∞∑
n=1

An sin(ωnt) (11)

where:
ωn = nω0 = 2nπf0

An =
V0
2π

(
1− (−1)n

n

)
(12)

1Where V1(t) is for the square wave, and V2(t) is for the sinusoidal wave.
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Then, we write VAB as following:

VAB = VA − VB = V1(t)− V2(t)

=
∞∑
n=1

An sin(ωnt)− A sin(ωt)

=

 ∞∑
n=1,n6=m

An sin(ωnt)

+ Am sin(ωmt)− A sin(ωt)

=

 ∞∑
n=1,n6=m

An sin(ωnt)

− (Am + A) sin(ωt) + [Am sin(ωmt) + Am sin(ωt)]

=

 ∞∑
n=1,n6=m

An sin(ωnt)

− (Am + A) sin(ωt)

+ 2Am cos(
ωm − ω

2
t) sin(

ωm + ω

2
t)

Here, we have the rapidly oscillating part of the signal plus a slow
variation in amplitude due to the beats. The slow response of the
galvanometer averages out the rapidly oscillating part of the signal
(obtain a DC level), and averages out the beats. The signal that we
finally detect is shown below.

We see that from the amplitude of the beats we can obtain both
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the amplitude and the frequency of the harmonic component of the
waveform.

3.2 Procedure

• The circuit as shown in figure(3) was connected.

• The signal generator S1 was set to give a square wave at a fre-
quency of approximately 60 HZ. And the signal generator S2 was
set to provide a sine wave.

• The galvanometer was set on the x.03 scale.

• The signal generators were set for a peak amplitude of ≈ 3V .

• The amplitudes of the two signals were approximately kept equal.

• The amplitude of the oscillation and the frequency of the sine
wave were recorded2.

• The frequency of the sine wave was increased to an integral mul-
tiples of the fundamental frequency (nf0).

• These measurements were performed 7 times.

4 Data

f0 = 60 Hz
A0 = 11.9 cm

2The sine wave frequency was measured from the oscilloscope trace, not from the dial setting of
the generator, it is only approximate, because the generator scales may not be exactly accurate.
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Trial f (Hz) f /f0 A(cm) A/A0

1 59.91 0.998 11.9 1.000
2 120.0 2.000 0 0
3 179.2 2.987 4.1 0.345
4 239.8 3.997 0 0
5 298.9 4.982 1.8 0.151
6 359.8 5.997 0 0
7 417.8 6.963 1.7 0.143

5 Analysis and Calculations

Using equations(11 & 12):

V (t) = A1 sin(ω1t) + A2 sin(ω2t) + A3 sin(ω3t) + A4 sin(ω4t)

+ A5 sin(ω5t) + A6 sin(ω6t) + A7 sin(ω7t) + ...

In this experiment, the first seven terms were taken and analysed.

For this seven terms, by dividing the beat frequency of them by the
fundamental frequency, we obtain the following ratios (theoretically &
experimentally):

ωn/ω0 Theoretically Experimentally

ω1/ω0 1 0.998
ω2/ω0 2 2.000
ω3/ω0 3 2.987
ω4/ω0 4 3.997
ω5/ω0 5 4.982
ω6/ω0 6 5.997
ω7/ω0 7 6.963
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Now, from equation(8), the theoretical amplitude ratio is as following:

An

A0
=

1

n
(13)

So by dividing the beat amplitudes (An) by the amplitude of the beat
at the fundamental frequency (A0), we obtain:

An/A0 Theoretically Experimentally

A1/A0 1 1.000
A2/A0 0 0
A3/A0 0.333 0.345
A4/A0 0 0
A5/A0 0.200 0.151
A6/A0 0 0
A7/A0 0.143 0.143

6 Discussion and Conclusion

From the table of frequency ratios, the theoretical frequency must be
an integer multiple of ω0, as shown in equation(10). Note that the
theoretical and the experimental values are almost the same with an
error less than 0.53% 3.

And from the table of amplitudes ratios, the even terms must be zero
according to equation(8). So as shown in experimental values, A2 =
A4 = A6 = 0, which consistent with the theoretical values of them.
Moreover, the values of A1 and A7 are the same as their theoretical
values. However, there are some errors in the values of A3 and A5 :

3Since the maximum error is at trial 7: (1− 6.963
7 )× 100% = 0.53%
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E3 = |0.333−0.345|
0.333 × 100% = 3.60%

E5 = |0.200−0.151|
0.200 × 100% = 24.5%

In this experiment, there are some sources of error, such as:

• The recorded values of frequency were not exactly precise in the
signal generator. The values were not stable.

• Due to the error in reading the frequencies, the amplitude read
from the galvanometer was affected. As a consequence, the values
of the amplitudes in some cases had some errors, as shown in E3

and the high error percentage in E5.

• The low precise in reading amplitudes from the galvanometer
spot, whose response is slow. So we didn’t record the amplitude
exactly.

Finally, we have shown by studying seven terms that we can write the
square wave function as a sum of harmonic functions: sine and cosine.
If more terms are studied, the values would be close or almost close
with some errors to the theoretical calculated values. Such a process
is called Harmonic Analysis; which is rewrite a periodic function as
a sum of harmonic functions.
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